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SUMMARY

An incompressible potential flow theory is used to determine the
steady separated flow about an aerofoil. The theory permits a continuous
variation from fully-attached (Joukowski) flow to fully-separated (Helmholtz)
flow, with the Kutta condition always satisfied at the trailing edge, and with
the position of the separation point as an assignable parameter to determine
the flow configuration. The method is also applicable to other flows such as
that about a flat plate with a rear free-stream flap.
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1. Introduction

The incompressible inviscid flow about a flat plate is basic to the theory
of acrofoils in acrodynamics. Fully -attached flow around a flat plate may be
determined by conformal mapping from the flow around a circular cylinder
with the Kutta condition that velocity is finite and the pressure is continuous
at the trailing edge of the flat plate. Schmieden [1] proposed a method to
determine flat plate flows with separation from the rearward surface forming
an open. infinite wake (Another class of solution has also been considered by
Schinieden in an earlier paper [2]). His work has been largely ignored in the
English hnerature. 1t is to be shown here that Schmieden’s proposal can be
extended into a method which spans the full range of admissible separated
potential flows about a flat plate and also about an arbitrary acrofoil section.
This provides a new theory which spans the whole range from Helinholtz'
theory to Joukowski's theory.

Specifically, an extension and modification of Schmieden’s method of de-
termining the flow about a flat plate is presented here. 1t yields the Joukowski
and Helmholtz flows as given in Lamb [3], as particular liniiting cases, and
permits a continuous variation from one flow configuration to the other. The
method is simple but is general enough to allow for the representation of
flow about an arbitrary aerofoil section when the section ix approximated by
a polygon. The problem has not been treated in the comprehensive book by
Birkhoff and Zarantonello [] and is of a more general nature than thin wing
theory based on perturbation as given in the book by Woods [5]. By alter-
ing the complex velocity function other variant flows can also be modelled,
among which is the flow about a flat aerofoil with a rear free-stream flap.
This flow was described by Hurley and Ruglen [6], and has been considered
more recently by Saffman and Tanveer [7].

Separated flow with a finite wake has recently been a topic of interest,
as shown in the numerical studies of Ribaut [8.9] and the references cited
there. The merit of the present method is that it requires only a very small
amount of computation to arrive at a self-consistent potential flow model.
This model may then be used as an initial state for iterative processes such
as those of Ribaut. It may also be used as a flow model in its own right,
as a reasonable representation of a real physical flow, in a similar way to
Pinkerton’s model {10] in order to obtain a reduced circulation so that the
advantage of the latter model is retained but without incurring the violation
of Kutta's condition at the trailing edge of the aerofoil.

The new theory presented here does not give an under-pressure inside
the finite wake. This is consistent with the statement in Batchelor's book
[11] that no mathematical model of inviscid flow without anomalies has been
found to satisfly the under-pressure condition. This feature is also charac-
teristic of the whole set of free-stream flows which have appeared since the
original paper by Helmholtz. The theory presented here is proposed as a
fairly situple solution upon which more refinements may be added to arrive
at some better predictions than are afforded by existing methods: indeed, a
inore elaborate model with recirculation is under investigation.

[t may be noted that the reunion of free streamlines behind an obstacle
has been a subject of controversy. Southwell and Vaisey [12] obtained such
reunion behind a circular eylinder with their relaxation method. This reunion
was subsequently questioned by G.LTaylor and doubt was raised whether it
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was due solely to the use of numerical approximation. The existence of such
a reunion point in a symmetrical potential flow was first shown by Lighthill
[13] in answer to Taylor’s question. The results in this paper confirm the
existence of reunion points in more general asymmetrical flows.

2. Flow about a Flat Plate
Using Helnholtz® method, we define a complex velocity potential
w=eo+i§  {o ¢ real) N

and a complex function ¢ is introduced
d: -
C=n( - )= -lng+ 14 (2)
du

where ¢ and ¢ are the magnitude and angle of the velocity vector in the
(physical) z-plane. The flow under consideration is shown in the physical and
the hodograph planes in figures la and 1b. In figure la, the physical flow is
from the left to the right. The dividing streamline DA comes to a stagnation
point at A and then follows two different paths along ABCWD and AED.
The upper trailing free stream line CWD leaves the trailing surface of the flat
plate tangentially. As this free streamline begins with its concavity initially
on its upper side and proceeds to infinity with the coucavity finally on its
lower side, it must have an inflection point W somewhere hetween ' and D.
The inflection point W is not easily seen in figure la due to the small degree
of curvature and the scale of the plotted figure. The area behind the flat
plate. bounded by the curve DWCED is the separation wake with constant
pressure inside and with no internal flow. The channel with the breakwater
in figure 1b corresponds to the physical flow outside the separation wake of
figure la. The solution to this flow with an infinite wake is due 1o Schmieden,
The method of solution given below will be slightly different from that of
Schmieden’s original work so that it can be extended smoothly into flows
where the two trailing free stream lines reunite at a finite distance from the
aerofoil.

Introducing a o plane such that

d: (d_[’")(o_f,,”ﬂ,)

ﬂv~

= Tonite Zon)’ )

the flow shown in figure lc is obtained. The complex scaling constant ¢
determines the size and the orientation of the flow in the z-plane. The
upper semi-circle corresponds to the constant direction paths in the z-plane
and the real axis corresponds to the free streamlines in the z-plane, which
have constant q. The center W of the semi circle is chosen to correspond
to the inflection point of the free streamline DABCWD in the z-plane. Tt
corresponds to the tip of the breakwater in the ¢ plane, which is the point
where there is a reversal in the variation of the direction of the vel city
vector along a free streamline in the physical plane. A consequence is that
o4 is equal to —sp5. The existence of the inflection point W in the wnfinite
wake case is the consequence of the assumption that the upper trailing free
stream line leaves the trailing surface of the flat plate tangentially. Here it
ix assumed that exactly one inflection point exists on one of the two trailing
free stream lines. This assumption will be justified a posteri . The method
)




of solution here differs from that of Schmieden in that the inflection point
W is chosen to be the center of the semicircle of the o plane rather than D
being the center of the semicircle of Schmieden’s r plane.

Putting D on the real axis of the semi-circle and taking the complex
function w(s) to be
1 o? A 40
wl(r) = e e e - TR (41)
(¢ —ap)? (1-0po)? (c-ép) (I-ocpa)
~o that the imaginary part of «{0) is constant along the boundary of the semi-
circular disc of the ¢ plane. with » being a real constant gives Schinieden’s
solution to the flow with : determined by

:= /L<:!1:I1in. (5)

As D is put at various positions from 1 to 0 on the real axis of the ¢
plane the flow varies continuously from Helmholtz™ fully separated flow to
flow with a wake closing at infinity. In the limit when D is close to | in
the « plane, the flow tends to the configuration of Helmholtz's flow. The
separation point C is then very close to the leading edge B of the flat plate
and the inflection point W is also very close to B. Therefore the upper free
streamline appears as if it was leaving the leading surface of the flat plate
at the point B as in Helmholtz's result. The point D cannot be put on the
negative part of the real axis of the o plane as this creates free streamlines
which cross at a finite distance from the trailing edge. The latter kind of
solution is unacceptable. The above result is essentially the same as given
in Schmieden’s paper except for the choice of the inflection point W as the
center of the semicircle. It is this choice which allows the smooth transition
to a flow with a finite wake.

It is found here that as the point D cannot be put to the left of the center
of the semi-circle it can be put above the real axis, having its associated
complex potential w(cs) as

1
u(o) = e"’(;l;;) +e’( f’:(;;;) + v"d(t;‘_“gn )+
(7 - op)1 - opa)
(¢ —dpN1 —épa)

which is chosen so that the imaginary part of w(s) is constant along the
boundary of the semicircular disc of the o plane, with 3,4 being real numbers
corresponding to a doublet plus a vortex at op and its three image points.
A closed wake flow is then obtained. The two trailing free streamlines close
at the point :¢ in the physical plane, which corresponds to the point ¢ on
the negative real axis of the semi-circle in the ¢ plane. The real numbers J
and 4 are determined by the {oilowing two equations

s 7 Y pial (4h)
1 - 4

D

N lm(t‘"’[(—”u—r - (—,‘iAﬁB

e4~p) -0p)

T TR T i) ©
and I~ d dz
WS PALERI (7
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which require that A be a stagnation point and that the integral given by
formula (5) vanish along the contour ABCFEA respectively: these two equa-
tions will be discussed in detail later.

As the point o5 moves upwards leaving the center while tending toward
the tup of the semi-circle, the flow in the physical z-plane closes nearer and
nearer to the trailing edge of the flat plate. In the limit as op tends to 4
with o4 and ep moving towards the same point to keep the angle of attack
constant. the flow in the z plane tends to the Joukowski flow about a flat
plate with its angle of attack o determined by the relative positions of sp.04
and ap. The value of » represents the circulation about the geometry {ormed
by the aerofvil and its closed wake. As the flow tends towards the Joukowski
flow the circulation - tucreases toward that required in Joukowski flow. Hence
a flow with a closed wake may be regarded as a “reduced circulation™ flow.

Consider now the two equations (6) and (7). To satisfy them both. the
point ¢p must follow a specific curve joining ¢ = 0 and ¢ = i for each given
value of angle of attack o (i.e. eaci: angle of attack o corresponds to a different
curve), as tllustrated by the lines of constant o in figure 5. It is seen that for
each given o4 and o5 = ~04. the difference h(op) between the two values of 4
given by equations (6) and (7},

URR)

o 4
L G P 1] | I 1
Feop) = a sr o - +hie ap| ey = - =]
Re(, A =0 0%5) ap? =% apt-o4f

tends to +~ and --~ when the argument of o tends to 0 and to 7 respectively
while the magratude of 0 < Jop} < 1 is kept constant. The reason is that the
last term remains finite and the first term is approximated by —cosJ/Im{sp).
Since h{op) is conunuous inside the semi-circular disc there must be a zero
of h(op) for each value of |op). Also for each value of 54 = -5, the argument
tap of ap required such that hisp) vanishes is a continuous function of the
corresponding magnitude [op|. Since h(op) is positive for Lop close to 0 and
negative for tap close to » and h{op) 1s continuous it is obvious that there
mubt be a continuous line joining op = 0 and [op| = 1 on which k(op) is
zero. As the angle of attack is a com'u\uous function of sp and o, there is a
continuous line joining 7 = 0. s =i for each angle of attack smaller than r/2
such that the function A(ep) is zero on this line. This is depicted in figure 5.

It is noted that this proof of existence of the locus for op such that
hop) = 6 holds irrespective of the form of the function d:/dw as long as we
have

limg (o) (B) - limg ., {8) < 0,

with 3(sp) determined from equation (7) only.

All solutions for separated flow about a flat plate are given in the graph
of figure 5. This graph relates the values of Argument{s.). op, separation
distance s and angle of attack o.

Using the results given in the graph, the coefficients of lift, drag and
moment are plotted for each value of angle of attack o and the distance s
from the leading edge to the separation point as in figures 6a, 6b and 6c.

Inspection of figures 2, 1. 3 and 4 shows that as the separation point on
the upper surface of the flat plate moves rearwards the flow closes and the
reunion point moves such that the flow approaches the Joukowski configura-
tion. In full Helmholtz flow the leading edge B, the separation point C and

4
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the nflection point W coincide, the flow appears as if having its upper free
streamline leaving its leading surface tangentially at the leading edge. As
the two trailing streamlines tend to close up. the inflection point W moves
away from the separation point C, tending towards infinity. After closure of
the two free streamlines, the inflection point W moves into the lower trailing
streamline and approaches the trailing edge E as the flow tends towards a
Joukowski flow. Our assumption that there is exactly one inflection point
W on the two trailing free streamlines has been justified since the resulting
flows form admissible solutions to the problen.

At any angle of attack of the flat plate, the drag value can range between a
maximum value corresponding to Helinholtz flow and zero as in a closed wake
flow. It is noted that the lift in this theory can still he positive for angle of
attack higher than /2. provided the separation point is appropriately chosen
as illustrated in figure 6a. As can be seen in figures 5 and lc, when the point
D is not on the positive part of the real axis of the » plane, i.e. in finite
wake flows, it is on the left hand side of the semi-circular disc on this plane,
which corresponds to the left hand side of the breakwater of figure 1h. This
makes the flow speed on the trailing free stream lines lower than the flow
speed at infinity. By Bernoulli’s theorem, the pressure on these trailing free
streanilines, and hence the pressure inside the finite wake, must be higher
than the pressure at infinity. This is not found to occur experimentally, and
is a conunon shortcoming of freestream flow models as already discussed in
the introduction part of the paper.

3. Flow about an arbitrary aerofoil

The existence of separated flow about an arbitrary aerofoil is now es-
tablished. The result was conjectured by Schmieden using only physical
reasoning.

First using equation (1) and (2) the potential w is established as in the
previous section. The physical z-plane is as in figure 7 and a \-plane defined
by

2_ .2
& = \',," \.l,’ ).
AW
with ¢ being a complex scaling constant. Obviously the aerofoil boundary
in the \ plane is not a semi-circle of unit radius but is distorted as depicted
in figure 8.

In accordance with Riemann's mapping theorem. the area bounded by
the curve ACWDEA can be mapped outo the upper semi-circular section in
the o plane of figure lc such that ow =0, {04} = |o¢| = |o£]| = 1 and d\/ds >0
at \ = 0. In this way the transformation \(s) is given by

NGEDMN TS (8)
=1

where b, are the real valued cofficients of the series and b, > 0. The series so
defined is convergent for all |#] < 1.

The results presented above cover Schmieden’s conjecture: The separated
flow around any given aerofoil corresponds to a separated flow around a flat
plate. The correspondence is given by equation ().
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The composite function ¢(\(#)) for this flow is thus defined for all » inside
the upper semi-circular disc. By writing

. ad — (T3 .
¢\ (7)) = In( “)+10(\ (7))
g =T
it can be proved that the function »(\(=)). which is
io(v(e) = (N o (T 7 4 g LT VP ) 4 constan.
\— o -y \ ~ 8

ix analytic on the semi-circular disc and that ¢(\(e)) is real for -1 <o < 1.
Therefore ¢(1(2)) takes the form

x:

7 —F4 . n . .
Ul = m(‘;_—a)wZnnnn +im ()

n=]

with all a;.es.a3,... real. The constant a, is real for real op and is complex
otherwise. The condition for the stagnation peint to he at A remains the
same as for a flat plate and is given by equation (6). The closure condition
(7) now becomes

iy _ 1_15]
;Tj - do a=ep
or

~

1 1 . P
T +1ana,.r7;’,"]. (10)

1R [
erd op — 04 op —= 04

n=1

When 7, sweeps a semi-circular arc described by ap = re* (0 < r <
1. + kept constant, ¢ increasing from 0 to ) the first two terms being
~2lm{r4)/|(ep — a4)ep — 74)] do not contribute to the increase in J but the
third term may alter the value of 3. The right-hand side of equation (10} is
the product of d¢/d\ and dy\/ds. Since y\(7) is a one-to-one and onto conformal
mapping. the derivative d\/do cannot vanish anywhere on the disc |o| < 1.
On the other hand. the derivative

2
AR S Vb

“~\B L ]

[t}
[
-

changes sign once for \ travelling on the real segment (\~.x\g). Therefore
. changes its value by » when op sweeps the semi-circular arc described by
op = re (0<r <1, r kept constant, ¢ increasing from 0 to ). Thus a proof
similar to that of the preceding section can be constructed to prove that there
exists a continuous line for o5 such that the pair of equations (6) and (7)
are satisfied on that line. Hence with any arbitrary acrofoil at a given angle
of attack, the flow can vary continuously from fully attached (Joukowski)
flow to fully separated (Helmholtz) flow. It is worthwhile noting that the
curvature k for a free streamline of speed ¢, is given by

de

. d( do
P = o = = [ lo.
k el ”“[da du'] for real o (11)

Hence

d\ do

da dw for real o.

1 o~
k= q/[—'.?lm(,;_ i )+ Zl nia,o" Tl
ey
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It ix noted that the curvature is infinite at the starting points and also at the
reunion point of both free streamlines. The reason is that duw/d¢ vanishes at
the points C. E and F.

As o tends to 0, o4 tends to ie=®/? and k tends to 0. Therefore the
quantity inside the accolades must vanish. Hence

ay :'.Zcos(i) (12)

for a flow with free streamlines closing at infinity.

For a flow with finite wake the circulation around the wing is 2+, where
- is given by the system of equations (6) and (7). The free-stream veloeity
{at the point D) 1s given by

du 1 \h - \"
. D A
Uy —ir _(d—-) _:(&_T__.ij
=D C D B

and the pure lift (there is no drag in flows with finite wakes) is given by

1 \'.’ - \’.’
pima| g MM
CA\b —\}

where p is the density of the fluid. As the two streamlines open the pure lift
changes smoothly into lift and drag caused by a stagnation zune behind the
aerofoil.

For the practical computation of flow about a given aerofvil. it is conve-
nient to use the following formula

i 1 "
{r) = In{ L_»fl) + / In{ ijeﬁ Ydf{t) + complex constant
o—04 b oc—e

where f(1) is a function with bounded variation defined for all real 1 with
0 <t < 1. then each flow regime corresponds to a function f(1). However the
construction of such a function f(¢) from a given aerofoil shape and selected
op ts complicated as it involves the determination of the function f(1) to fit
a given curve. Figure 9 gives a closed wake flow about an approximated
NACA-23012 aerofoil obtained with this method. The aerofoil is represented
by a polygon which then gives the function j(t) as a step function. The steps
of this function are determined by a Newton-Raphson iteration method.

The reader is also refered to the book by Birkhoff and Zarantonello for
other methods of determining flows around a curved obstacle.

4. Flat Plate with rear Free-stream Flap

By making some minor changes to d:/dw different flows can be con-
structed from the same basic ¢ -plane. One such variation considered here is
the flow about a flat plate aerofoil with a rear free-stream flap. The bound-
ary of this flow is either of constant direction or of constant pressure. The
flow 15 obtained with the selection of 4:/4w as

pREa =0

i




where —mz is the trailing edge angle of the aerofvil. The flow so obtained
i~ given tn figure 10. This result was obtained previously by Hurley and
Ruglen (using a different technique) and recently recalculated by Saffman
and Tanveer (using vet another technique). Comparing this flow with the
separated flow with reunion about a flat plate it can be seen that there are
three equations connecting J and ~. This redundant system of equations 1m-
poses certain relationships between o4, 7 and ¢ and consequently between
s 2 and zp. as previously suggested by the above four authors. It is noted
that the closing condition for this flow is still equation (7} as in the previous
two sections.

5. Conclusions

The incompressible. inviscid flow about a flat plate with an assigned
separation point on the rearward surface has been described using a single
a-plane. Some of the interesting points about the flow are:

a. For every angle of attack. the flow about a flat plate can vary contin-
uously from fully-attached (Joukowski) flow to fully-separated (Helmholtz)
flow. with the Kutta condition always satisfied at the trailing edge. and with
the position of the separation point as an assignable parameter to determine
the flow configuration. Reduced circulation flow. in which the free stream-
lines close at a finite distance, and Schmieden’s flow are intermediate states.

b. Lift and drag vary continuously as the separation point moves on the
rearward surface of the flat plate. Drag is zero for all lows with a finite wake.
Lift can remain positive even for angle of attack greater than =72 provided the
separation point 1s appropriately chosen. Pitching moment about the quarter
chord point can increase or decrease with the angle of attack depending on
the chosen position of the separation point.

c. There is only one mflection point on the trailing free streamlines. This
inflection point is on the upper free streamline when the flow is open and is
on the lower one when the flow is closed.

d. Results analogous to a. and b. also hold for an arbitrary aerofoil
section.
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APPENDIX A

A fail-proof algorithm for obtaining arg(s,)
in Flows about a Flat Plate

r To calculate the value of arg(op) when l7p] is given for flows about a flag
plate with reunion of free stream line the following flow chart can be used

arg(ep) = 0.001

R Pt ]|

4 I

Ime A T D
h=- Azl (eqepi®

b Va4
2%
}
increase arg(sp)
= - I - v
Jd= nT!l(,[,D_,v‘ ”:)_”;.47])
L A
i *a
= s )
el - ;;"A'b )
EYRE 1
+2”)I’”D[';Z>i;;’1; - ;1)""—6'4’]
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APPENDIX B

Algorithm for the calculation of Flow
about a Flat Plate

To calculate the flow about a flat plate with given values of o and s the

following flow chart is used
START

INPUT
angle of attack o
separation point s

[

op =1,
arg(aa) =0

T
|

F’ary op along +1,0, to +iJ

1
1

I vary o4 from 0 to 7r/2|

op on locus?

YES
angle of attack
=02

YES

Separation distance
”

OUTPUT
flow data

1




i APPENDIX C

: Algorithm for the calculation of Flow
: about an approximation (polygonal) wing

To calculate the flow about a wing with a given polygonal cross sec-
tion (approximating a smooth cross-section) for given values of « and s the

following flow chart is used
START

INPUT
angle of attack o
separation point s
length of sides of polygon
with attached flow

[

set initial approximation
for 7B1.-08n

|
k

compute coordinates of corners
of the polygonal boundary

scale and rotate the
polygonal boundary A

Newton-Raphson's iteration used
until sides and angle of attack
are equal to desired values

ITERATION COMPLETED

ovreer

flow data

sSTop
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FIG. 1c: SKETCH OF SEPARATED FLOW ABOUT A FLAT PLATE REPRESENTED IN THE
a PLANE.




FIG. 2: SEPARATED FLOW ABOUT A FLAT PLATE, WITH 0p=0g (ANGLE OF ATTACK
~n/4).
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FIG. 3: SEPARATED FLOW ABOUT A FLAT PLATE, WITH gy~ oy, (ANGLE OF
ATTACK = 7/4).
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FIG 6a: LIFT COEFFICIENT OF A FLAT PLATE FOR DIFFERENT ANGLES OF ATTACKS
AND POSITIONS OF SEPARATION POINT.
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FIG. 6b: DRAG COEFFICIENT OF A FLAT PLATE FOR DIFFERENT ANGLES OF ATTACKS
AND POSITIONS OF SEPARATION POINT.
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FIG. 6c: MOMENT COEFFICIENT OF A FLAT PLATE FOR DIFFERENT ANGLES OF
ATTACK AND POSITIONS OF SEPARATION POINT (SHIFTED CO-ORDINATES
USED FOR s=0.9 to s=0.0001 WITH EACH CURVES BEGINNING FROM ITS

ZERO CO-ORDINATE)
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FIG. 7: SKETCH OF SEPARATED FLOW ABOUT AN ARBITRARY AEROFOIL.
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FIG. 8: SKETCH OF SEPARATED FLOW ABOUT AN ARBITRARY AEROFOIL,
REPRESENTED IN THE \'PLANE.
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FIG. 9: SEPARATED FLOW ABQUT AN APPROXIMATE NACA 23012 AEROFOIL.




~X

——— -

FIG 10. FLOW ABOUT A FLAT PLATE WITH REAR FREE STREAM FLAP,
REPRESENTED IN THE z-PLANE AND 7 PLANE
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